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A B S T R A C T

This letter reports on the fabrication of hollow, porous and non-porous poly(D,L-lactide-co-glycolide)

(PLGA) microspheres (MSs) for the controlled release of protein and promotion of cell compatibility of

tough hydrogels. PLGA MSs with different structures were prepared with modified double emulsion

methods, using bovine serum albumin (BSA) as a porogen during emulsification. The release of the

residual BSA from PLGA MSs was investigated as a function of the MS structure. The hollow PLGA MSs

show a faster protein release than the porous MSs, while the non-porous MSs have the slowest protein

release. Compositing the PLGA MSs with poly(vinyl alcohol) (PVA) hydrogels promoted chondrocyte

adhesion and proliferation on the hydrogels.

� 2013 Jun Fu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
1. Introduction

The delivery and controlled release of bioactive materials such
as proteins and growth factors are critical for the treatment of
many diseases and tissue engineering with programmed local
delivery [1,2]. Polymer microspheres are among the most effective
candidates due to the flexibility in the design and manipulation of
their structures and capacity [3–6]. Moreover, the encapsulation of
biofunctional material in the MSs [7] has been demonstrated to be
effective in maintaining the bioactivity of the material of interest,
which is important for the subsequent local release [8]. PLGA is an
FDA-approved biomaterial [9] with excellent biocompatibility and
biodegradability, and frequently used to prepare protein carriers
[10] for the regulation of cell behavior [11] in three-dimension
scaffolds [12].

The polymer MS structures strongly influence the protein
release kinetics [13]. The protein loaded in polymer MSs can travel
through the pores and channels formed during the formation of
protein-microsphere composites. For example, a highly porous
poly(D,L-lactic acid)-poly(ethylene glycol) (PDLLA-PEG) MSs re-
lease a drug at a considerably higher rate than their non-porous
counterparts [14]. In addition, hollow non-porous polymer MSs
show rapid release of plasmid DNA [15]. However, the effects of
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hollow porous, porous and non-porous structures of PLGA MSs on
protein release rates have not been systematically compared.

In this Letter, PLGA microspheres with controlled structures, i.e.,
non-porous, porous and hollow porous were systematically
prepared, and the protein encapsulation efficiency and release
behaviors were comparatively studied. The protein-loaded porous
and hollow porous MSs were composited with PVA hydrogels,
which are potential candidates for cartilage repair [16] with the
cell compatibility yet to be improved [17], to remarkably enhance
the chondrocyte adhesion and growth on the hydrogels [18,19].
The effects of MS structures and releasing behavior on the cell
growth on the hydrogels are discussed.

2. Experimental

PLGA (Mw = 50,000; lactide:glycolide = 1:1 (mole/mole),
Ji’nan Daigang Biology, China) microspheres were prepared by
a double emulsion method [3]. Briefly, a 4 mL PLGA/methylene
chloride (CH2Cl2) solution (2.26 wt%) and a 0.4 mL BSA (15 mg)
aqueous solution were emulsified at room temperature, followed
by solvent evaporation in a 25 mL 0.5 wt% aqueous PVA solution
with mechanical stirring at 1000 rpm. The MSs were thoroughly
washed with deionized water and lyophilized for use. Hollow
porous PLGA MSs were obtained by increasing the volume ratio of
the aqueous phase to the organic phase to 1:2 and the BSA/PLGA
weight ratio to 1:3.

Porous PLGA MSs were prepared by a modified water-in-oil-in-
water (w/o/w) double emulsion method [20]. Briefly, 3 mL
Chinese Chemical Society. All rights reserved.
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PLGA/CH2Cl2 (5 wt%) and 0.6 mL BSA (BSA/PLGA = 0.6, w/w)
aqueous solutions were emulsified in an ice bath, followed by a
second emulsification with a 4 wt% aqueous PVA solution (15 mL)
to form a w/o/w emulsion with mechanical stirring at 700 rpm. The
organic solvent evaporated during stirring in a 300 mL 0.5% PVA
solution at 700 rpm for 4 h. The precipitate MSs were washed with
deionized water five times and lyophilized.

The above-prepared PLGA microspheres were added into a
10 wt% aqueous solutions of PVA (degree of polymerization:
1750 � 50, Sinopharm Chemical Reagent Co., Ltd.) with 20 wt% PLGA
with respect to PVA, and gelled by six freeze-thawing cycles.

Primary human chondrocytes at passage 6 (CHON-001,
American Type Culture Collection (ATCC)) were seeded
(1 � 105 cell/mL) on sterilized hydrogels and cultured in complete
medium of McCoy’s 5A medium (Gibco1, Life Technologies
Corportation, USA) with 10% fetal bovine serum (Gibco),
100 U/mL penicillin, and 100 mg/mL streptomycin (Jinuo Compa-
ny, Hangzhou, China) under a humidified atmosphere of 95% air
and 5% CO2 at 37 8C. The culture medium was replaced every other
day. After 1 and 3-day culture, the samples were gently rinsed with
PBS, followed by treatment with 2.5 wt% glutaraldehyde overnight.
The samples were washed and stained with a 40,6-dianidino-2-
phenylindole dihydrochloride (DAPI, Beyotime Company, Shang-
hai, China) solution, incubated in dark at 37 8C for 5 min, washed
with PBS, and imaged with an inverted fluorescent phase contrast
microscopy (OLYMPUS IX51, Japan).

The PLGA particle size was determined with a S3500-special
Microtrac Particle Size Analyzer (Microtrac, USA). The PLGA
particles, hydrogels, and cell morphology, after carbon sputtering,
were imaged with a scanning electron microscope (HitachiTM-
1000, Tokyo, Japan) at 15 kV. The average pore size was
determined by analyzing the SEM images using an Image-Pro
Plus Software (Media Cybernetics). Ultrasound sonication was
used to fracture the hollow microspheres for SEM imaging.

The encapsulated protein (BSA) in the MSs was determined by
subtracting the protein feed before emulsification (Mprotein, feed) by
the residual protein in solution after emulsification
(Mprotein, residual),

Mprotein; encaps ¼ Mprotein; feed �Mprotein; residual (1)

where the Mprotein, feed and Mprotein, residual values in the solutions
were determined by using a BCA (bicinchoninic acid) protein assay
(Zoman Biotechnology Co., Ltd., Beijing, China).[(Fig._1)TD$FIG]
Fig. 1. SEM images of the PLGA microspheres: (a) non-porous MSs, (b) por
The protein encapsulation efficiency (%) was calculated as:

protein encapsulation efficiency ð%Þ ¼
Mprotein; encaps

Mprotein; feed
� 100% (2)

The BSA load in microspheres (%) was calculated as:

BSA load in microspheres ð%Þ ¼
Mprotein; encaps

Mmicrospheres
� 100% (3)

The BSA release was conducted by incubating a suspension of
the BSA-containing PLGA MSs in PBS at 37 8C for up to 30 days. At a
predetermined time, the suspensions were centrifuged and the PBS
solution was collected and replaced with fresh PBS. The 562 nm
absorbance of the collected PBS solution was measured by a
Spectra Max 190 microplate reader (Molecular Devices, USA). At
least three specimens (n � 3) were tested for each sample.

Quantitative analysis of the cell adhesion and growth on the
hydrogels was conducted with a CCK-8 assay. After incubation for
1, 3 or 5 days, the cell-seeded hydrogels were gently rinsed and
moved to a new 24-well plate with fresh medium. The chondro-
cyte-seeded and cultured hydrogels in medium (1 mL) and a
100 mL CCK-8 solution were set as the experimental group. The
hydrogels, CCK-8 (100 mL) and medium without cell (1 mL) was set
as the control group. The two groups were both incubated for 4 h
and then a 200 mL solution of each well was sampled to determine
the absorbance at 450 nm by the microplate reader. The
absorbance difference of the experimental group and the control
group was regarded proportional to the cell numbers on the
hydrogels and thus used as a measure of the cell adhesion and
proliferation on the hydrogels.

3. Results and discussion

Fig. 1 shows the SEM images of the non-porous, porous, and
hollow porous MSs. The microsphere size is in the range of 25–
65 mm. The non-porous MSs are solid and smooth on the surface
(Fig. 1a). The porous MSs have an average pore diameter of
(1.31 � 0.84) mm (Fig. 1b). The co-emulsion with BSA at specific
formulations yielded hollow MSs, the internal structures and the
porous shells of which were exposed by fracturing the spheres with
sonication (Fig. 1d–f). The shell thickness varies from about 2 mm to
10 mm, containing pores with an average diameter of about
(1.0 � 0.36) mm (Fig. 1d–f).
ous MSs, (c) hollow porous MSs, and (d–f) broken hollow porous MS.
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Fig. 2. The schematic illustration of the formation of porous microspheres (a) and hollow porous microspheres (b) and the protein release.
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Fig. 2 schematically illustrates the formation of the porous and
hollow porous spheres via a double emulsion route. Herein, the
protein, BSA, acts as the surfactant and porogen during the
emulsification process due to its unique amphiphilic nature and
water solubility. The BSA molecules preferentially distribute in
water and the water-oil interface, forming a gel-like film around oil
droplets via noncovalent interactions [21,22]. Therefore, a
relatively higher BSA content (e.g., 199 mg/mL) may allow for
the stabilization of smaller droplets with large specific surface area
(Fig. 2a), whereas droplet coalescence may occur in the emulsion
with a relatively low BSA content (Fig. 2b). As an extreme example
with 20 mg/mL of BSA, during the second emulsification, the
internal water phase may form a large droplet encapsulated by the
PLGA/CH2Cl2 phase (Fig. 2b), whereas small droplets at high BSA
content may be encapsulated by PLGA/CH2Cl2 droplets (Fig. 2a).
After solvent evaporation, with 199 mg/mL of BSA in the internal
water phase, porous MSs were obtained. With 20 mg/mL of BSA in
the internal water phase, hollow porous MSs were obtained.

The porogen BSA content had a great influence on the pore size.
During the formation of double emulsions, the osmosis pressure
drives water penetration from the external water phase into
internal water phase, leading to the formation of interconnected
pores and finally porous PLGA spheres after solvent evaporation
(Fig. 2) [20]. It is reasonable to expect smaller pores to have a lower
osmosis pressure, which corresponds to a lower BSA concentration
in the internal water phase. For example, the BSA used for porous
MSs was about 199 mg/mL and 20 mg/mL for hollow porous MSs,
respectively. The BSA concentration in the internal aqueous phase
of porous MSs is higher than that in the hollow porous MSs. The
pore size increased with the BSA concentration (Fig. 1b and c).

During emulsification, most of the BSA in the aqueous phase
was encapsulated in the PLGA spheres. The penetration of water
into the PLGA spheres will dissolve the encapsulated proteins.
According to the formation mechanism (Fig. 2), the large pores in
the hollow spheres allow for the dissolution of BSA into water [23],
while the complicated micro-channels in the porous MSs can
Table 1
The BSA encapsulation efficiency and the BSA load in PLGA microspheres.

Microspheres BSA encapsulation

efficiency (%)

BSA load in PLGA

microspheres (%)

Nonporous MSs 64.1�2.4 8.0� 0.3

Porous MSs 21.0�4.0 12.6�2.4

Hollow MSs 4.6�0.5 1.5� 0.2
retain more proteins. Thus, the BSA encapsulation efficiency was
(64.1 � 2.4)% for the non-porous MSs, (21.0 � 4.0)% for the porous
MSs, and (4.6 � 0.5)% for the hollow porous MSs, respectively
(Table 1). The BSA loads (Table 1) were (8.0 � 0.3)% for the non-
porous MSs, while the data for the porous MSs and the hollow porous
MSs were (12.6 � 2.4)% and (1.5 � 0.2)%, respectively.

The diffusion through pores and interconnecting channels is a
predominant release mechanism for BSA-loaded PLGA MSs [24].
The structures of these PLGA MSs showed remarkable influence on
the protein release behaviors. Fig. 3a shows the BSA release profiles
[(Fig._3)TD$FIG]
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Fig. 3. (a) The BSA release profiles from hollow, porous and non-porous MSs. (b) The

nominal release rate of the non-porous, porous and hollow porous MSs.
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Fig. 4. Representative SEM images of different hydrogels seeded and cultured with chondrocytes for (a–c) 1 day and (d–f) 3 days.
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of different MSs at room temperature. The initial burst release was
found dependent on the microsphere structures: the burst release
was (16.4 � 0.5)% from non-porous MSs, (23.6 � 0.8)% from the
porous MSs, and (60.1 � 1.8)% from hollow porous MSs, respectively.
Subsequent pseudo-linear release kinetics was observed for all the
systems up to day 14. The nominal release rates (the slope of the
pseudo-linear release period) were 1.63 for porous MSs, 1.17 for
hollow porous MSs, and 0.86 for non-porous MSs, respectively
(Fig. 3b). The BSA release profiles showed a plateau after day 14. Up to
day 30, the cumulative BSA release reached (29.1 � 0.8)% for non-
porous MSs, (44.6 � 1.5)% for porous MSs, and (81.2 � 0.3)% for
hollow porous MSs, respectively. The non-porous MSs had the
slowest BSA release rate because the protein inside had to travel
[(Fig._5)TD$FIG]
Fig. 5. The fluorescent microscopy images of chondrocytes cultured for 3 days in vitro on

PVA hydrogels. The PLGA MS content was 20 wt%. DAPI staining was conducted to con
through the inner channels of non-porous MSs. In contrast, it was
much easier for the protein in the hollow porous MSs to diffuse into
PBS.

Protein adhesion is critical for cell adhesion and growth on
surfaces [25]. The protein-releasing PLGA spheres greatly
promoted the cell adhesion and growth on PVA hydrogels
(Fig. 4). As the BSA-loaded PLGA microspheres were composited
with PVA hydrogels, which are usually poor for cell attachment
([14], Fig. 4a), the chondrocyte adhesion and growth were
remarkably enhanced after in vitro seeding and culture for 3
days (Fig. 4 b, c, e and f). The chondrocytes adhered and spread
well on the hydrogels, indicating their excellent affinity to the
hydrogels.
(a) PVA, (b) non-porous MSs/PVA, (c) porous MSs/PVA, and (d) hollow porous MSs/

trast the nuclei of the chondrocytes.
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Fig. 5 compares the representative fluorescent images of
chondrocytes on the PVA (Fig. 5a), non-porous MSs/PVA
(Fig. 5b), porous MSs/PVA (Fig. 5c), and hollow MSs/PVA hydrogels
(Fig. 5d) after 3-day culture. More cells were found on the
composite hydrogels in comparison to PVA hydrogels, while the
cell number on the porous MSs/PVA appeared more than that on
the composite hydrogels. There were no significant differences in
the cell number on the hydrogels with hollow porous MSs and non-
porous MSs.

Quantitative assessment with a CCK-8 assay further revealed
the effect of protein release on the cell growth on these composite
hydrogels (Fig. 6). The reported differential absorbance values of
the experimental group and the control group were presumably
proportional to the cell number on the hydrogels. After 1, 3 and 5
days of culturing, the absorbance difference increased for each
composite hydrogels except for the virgin PVA hydrogel. In
contrast, low absorbance was observed for the PVA hydrogels.
These results indicate that the protein-releasing composite
hydrogels significantly promote cell adhesion and growth.
Moreover, the porous MS/PVA hydrogels appeared more favorable
for the cell growth compared to the hydrogels containing non-
porous and hollow porous PLGA spheres, provided that the
microsphere contents were the same. These results are in good
agreement with the fluorescent microscopy observations.

4. Conclusion

Nonporous, porous, and hollow porous PLGA microspheres
were prepared using a modified double emulsion method. The
effect of the porous and hollow structures on the protein
encapsulation and release behaviors has been systematically
investigated. The hollow porous MSs had the highest BSA release
rate while the non-porous MSs had the slowest protein release. In
contrast, the porous MSs showed the maximum protein load and
an intermediate release rate. These protein-loaded PLGA MSs,
when composited with PVA hydrogels, promote the cell adhesion
and proliferation. These results indicate the potential to use such
microsphere composite hydrogels for programmed and controlled
release of bioactive molecules for drug delivery or tissue
engineering scaffolds.
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